博客
关于我
【java】74. 搜索二维矩阵---代码优化,时间复杂度接近O(N)!!!
阅读量:325 次
发布时间:2019-03-04

本文共 1154 字,大约阅读时间需要 3 分钟。

为了高效地判断m×n矩阵中是否存在目标值,我们可以利用矩阵的特殊性质:每行有序递增,且每行的第一个数大于上一行的最后一个数。这种结构使得我们可以通过逐行查找和二分查找来优化搜索过程。

方法思路

  • 逐行检查:首先遍历每一行,逐个检查是否存在目标值。
  • 剪枝处理:对于每一行,先检查该行是否有可能包含目标值。如果当前行的第一个数大于目标值或最后一个数小于目标值,则跳过该行。
  • 二分查找:如果该行有可能包含目标值,则在该行中使用二分查找来确定是否存在目标值。
  • 这种方法充分利用了每行有序的特性,减少了不必要的比较,提高了效率。

    解决代码

    public boolean searchMatrix(int[][] matrix, int target) {    int m = matrix.length;    if (m == 0) return false;    int n = matrix[0].length;    for (int i = 0; i < m; i++) {        int[] row = matrix[i];        if (row[0] > target) {            continue;        }        if (row[n - 1] < target) {            continue;        }        int left = 0;        int right = n - 1;        while (left <= right) {            int mid = (left + right) / 2;            if (row[mid] == target) {                return true;            } else if (row[mid] < target) {                left = mid + 1;            } else {                right = mid - 1;            }        }    }    return false;}

    代码解释

    • 遍历每一行:使用一个循环遍历矩阵的每一行。
    • 剪枝处理:对于每一行,首先检查该行的第一个数是否大于目标值或最后一个数是否小于目标值。如果是,则跳过该行。
    • 二分查找:在可能包含目标值的行中,使用二分查找来确定是否存在目标值。如果找到目标值,返回true;否则继续下一行。
    • 返回结果:如果遍历完所有行后都没有找到目标值,返回false。

    这种方法的时间复杂度为O(m log n),能够高效地处理较大的矩阵。

    转载地址:http://tamq.baihongyu.com/

    你可能感兴趣的文章
    Nginx的使用总结(三)
    查看>>
    Nginx的使用总结(二)
    查看>>
    Nginx的可视化神器nginx-gui的下载配置和使用
    查看>>
    Nginx的是什么?干什么用的?
    查看>>
    Nginx访问控制_登陆权限的控制(http_auth_basic_module)
    查看>>
    nginx负载均衡和反相代理的配置
    查看>>
    nginx负载均衡器处理session共享的几种方法(转)
    查看>>
    nginx负载均衡的5种策略(转载)
    查看>>
    nginx负载均衡的五种算法
    查看>>
    nginx转发端口时与导致websocket不生效
    查看>>
    Nginx运维与实战(二)-Https配置
    查看>>
    Nginx配置Https证书
    查看>>
    Nginx配置ssl实现https
    查看>>
    Nginx配置TCP代理指南
    查看>>
    Nginx配置——不记录指定文件类型日志
    查看>>
    nginx配置一、二级域名、多域名对应(api接口、前端网站、后台管理网站)
    查看>>
    Nginx配置代理解决本地html进行ajax请求接口跨域问题
    查看>>
    nginx配置全解
    查看>>
    Nginx配置参数中文说明
    查看>>
    nginx配置域名和ip同时访问、开放多端口
    查看>>