博客
关于我
【java】74. 搜索二维矩阵---代码优化,时间复杂度接近O(N)!!!
阅读量:325 次
发布时间:2019-03-04

本文共 1154 字,大约阅读时间需要 3 分钟。

为了高效地判断m×n矩阵中是否存在目标值,我们可以利用矩阵的特殊性质:每行有序递增,且每行的第一个数大于上一行的最后一个数。这种结构使得我们可以通过逐行查找和二分查找来优化搜索过程。

方法思路

  • 逐行检查:首先遍历每一行,逐个检查是否存在目标值。
  • 剪枝处理:对于每一行,先检查该行是否有可能包含目标值。如果当前行的第一个数大于目标值或最后一个数小于目标值,则跳过该行。
  • 二分查找:如果该行有可能包含目标值,则在该行中使用二分查找来确定是否存在目标值。
  • 这种方法充分利用了每行有序的特性,减少了不必要的比较,提高了效率。

    解决代码

    public boolean searchMatrix(int[][] matrix, int target) {    int m = matrix.length;    if (m == 0) return false;    int n = matrix[0].length;    for (int i = 0; i < m; i++) {        int[] row = matrix[i];        if (row[0] > target) {            continue;        }        if (row[n - 1] < target) {            continue;        }        int left = 0;        int right = n - 1;        while (left <= right) {            int mid = (left + right) / 2;            if (row[mid] == target) {                return true;            } else if (row[mid] < target) {                left = mid + 1;            } else {                right = mid - 1;            }        }    }    return false;}

    代码解释

    • 遍历每一行:使用一个循环遍历矩阵的每一行。
    • 剪枝处理:对于每一行,首先检查该行的第一个数是否大于目标值或最后一个数是否小于目标值。如果是,则跳过该行。
    • 二分查找:在可能包含目标值的行中,使用二分查找来确定是否存在目标值。如果找到目标值,返回true;否则继续下一行。
    • 返回结果:如果遍历完所有行后都没有找到目标值,返回false。

    这种方法的时间复杂度为O(m log n),能够高效地处理较大的矩阵。

    转载地址:http://tamq.baihongyu.com/

    你可能感兴趣的文章
    Numpy 科学计算库详解
    查看>>
    Numpy.fft.fft和numpy.fft.fftfreq有什么不同
    查看>>
    numpy.linalg.norm(求范数)
    查看>>
    Numpy.ndarray对象不可调用
    查看>>
    Numpy.VisibleDeproationWarning:从不整齐的嵌套序列创建ndarray
    查看>>
    Numpy:按多个条件过滤行?
    查看>>
    Numpy:条件总和
    查看>>
    numpy、cv2等操作图片基本操作
    查看>>
    numpy中的argsort的用法
    查看>>
    NumPy中的精度:比较数字时的问题
    查看>>
    numpy判断对应位置是否相等,all、any的使用
    查看>>
    Numpy多项式.Polynomial.fit()给出的系数与多项式.Polyfit()不同
    查看>>
    Numpy如何使用np.umprod重写range函数中i的python
    查看>>
    numpy学习笔记3-array切片
    查看>>
    numpy数组替换其中的值(如1替换为255)
    查看>>
    numpy数组索引-ChatGPT4o作答
    查看>>
    numpy最大值和最大值索引
    查看>>
    NUMPY矢量化np.prod不能构造具有超过32个操作数的ufunc
    查看>>
    Numpy矩阵与通用函数
    查看>>
    numpy绘制热力图
    查看>>